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Abstract. The relaxation of the specific heat and the entropy to their equilibrium values is investigated
numerically for the three-dimensional Coulomb glass at very low temperatures. The long time relaxation
follows a stretched exponential function, f(t) = f0 exp

�
−(t/τ )β

�
, with the exponent β increasing with the

temperature. The relaxation time diverges as an Arrhenius law when T → 0.

PACS. 61.43.Fs Glasses – 61.43.Dq Amorphous semiconductors, metals, and alloys – 64.70.Pf Glass
transitions

1 Introduction

The relaxation in most glassy systems such as structural
glasses, ionic conductor, supercooled liquids, polymer, col-
loid, and spin glasses [1] deviates strongly from a single
exponential relaxation at some temperature T ∗ well above
the static transition. In the three dimensional Ising spin
glass model Ogielski [2] observed that the long time regime
of the relaxation functions is well approximated by the
non-exponential function

f(t) = f0t
−x exp

[
−(t/τ)β

]
, (1)

below T ∗ = TG, where TG is the Griffiths temperature [3].
In supercooled liquids [4] the characteristic features of the
relaxation processes in the long time regime is captured by
a stretched exponential or Kohlrausch-Williams-Watts [5]
decay function

f(t) = f0 exp
[
−(t/τ)β

]
, (2)

with 0 < β ≤ 1. This behavior can be obtained by a
superposition of purely exponential relaxation processes
but subject to a broad distribution of relaxation times [6].

Coulomb glass is a term used for Anderson insula-
tors with Coulomb interactions between the localized elec-
trons, and it has been established as an important semi-
classical model in the study of the electronic properties
of insulators [7,8]. Schreiber et al. [9] and Pérez-Garrido
et al. [10] studied the dynamical behavior of this model
when it is out of equilibrium. They found a broad distribu-
tion of relaxation times over several orders of magnitude,
which reflects the glassy behavior of this system. This
broad distribution results in a power law relaxation func-
tion [10]. Wappler et al. [11] used the damage-spreading
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algorithm to study the temporal evolution of this system
in thermal equilibrium. They found evidence for a dynam-
ical phase transition at a temperature T ∗ which depended
of the degree of disorder considered. Yu [12] used a self-
consistent equation for the density of states to study the
time evolution of the Coulomb gap, very long time scales
were found. D́ıaz-Sánchez et al. [13,14], considering the
dynamics in the configuration space, studied non-ergodic
effects on the specific heat and found very long relax-
ation times. Pastor et al. [15] predicted the existence of
a glass phase for a mean-field model of interacting spin-
less fermions in the presence of disorder. Experimental
measurement in electronic system of an Anderson insula-
tor [16] showed a glass phase with aging phenomenon ap-
pearing. There it was found that the common relaxation
law can be fitted by a stretched exponential function.

The aim of this paper is to study the form of the func-
tion describing the relaxation of the specific heat and the
entropy in the Coulomb glass at very low temperatures
and in thermal equilibrium. The paper is organized as
follows: Section 2 introduces the Coulomb glass model.
Section 3 describes the numerical procedure, i.e. how the
low-energy many-particle states are obtained numerically,
and the dynamics used in the simulation. In Section 4, we
use this procedure for the investigation of the relaxation
process of the specific heat and the entropy. Finally, in
Section 5 we extract some conclusions.

2 The model

A practical model to represent the Coulomb glass prob-
lem for simulating an impurity band of localized states
in lightly doped semiconductors, when quantum interfer-
ence can be neglected, was proposed in references [7,8].
Later it was also applied to simulate granular metals [17]
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and conducting polymers [18]. Following reference [19], we
consider a three dimensional cubic lattice with N sites.
The sites can be occupied by KN (0 < K < 1) elec-
trons which are interacting via an unscreened Coulomb
potential. Background charges −K are added at each of
the lattice sites, guaranteeing electro-neutrality. The dis-
order is simulated by a random potential εi. Their values
are uniformly distributed between −B/2 and B/2. This
model is represented by the Hamiltonian

H =
∑
i

(εi − µ)ni +
∑
i<j

(ni −K)(nj −K)
rij

, (3)

where ni ∈ {0, 1} denotes the occupation number of site i,
rij is the distance between sites i and j according to peri-
odic boundary conditions [20], and µ is the chemical po-
tential. The lattice spacing is taken as unit of distance.

In this paper, we focus in the half-filled impurity band
K = 1/2, where there is particle-hole symmetry and the
chemical potential µ equals zero at any temperature in
the thermodynamic limit. We take B = 2 in this paper,
similar results to the ones presented here are found for
other values of B [14].

3 Numerical procedure

In this section we shortly describe our numerical proce-
dure, a more detailed discussion can be found in refer-
ence [14]. Our aim is to simulate the temporal evolution
of the Coulomb glass at very low temperatures in thermal
equilibrium. For that we first obtain a set S of low-energy
many-particle configurations and later define a dynamic
between these configurations. We apply this procedure to
study the relaxation of the specific heat and the entropy
to their equilibrium values.

3.1 Low-energy configurations

We find the low-energy many-particle configurations by
means of a three-steps algorithm [14]. This comprises lo-
cal search [21,22], thermal cycling [23], and construction
of “neighboring” states by local rearrangements of the
charges [21,22]. The efficiency of this algorithm is illus-
trated in reference [14]. In the first step we create an ini-
tial set S of metastable states. We start from states chosen
at random and relax these states by a local search algo-
rithm which ensures stability with respect to excitations
from one up to four sites. In the second step this set S is
improved by means of the thermal cycling method, which
combines the Metropolis and local search algorithms. The
third step completes the set S by systematically investi-
gating the surroundings of the states previously found.

3.2 Dynamic in the configuration space

We now present a method to study the influence of the du-
ration of the measurement, i.e. the observation time τm,

on the expectation value of the specific heat c and the en-
tropy S [14]. This method defines a dynamic in the con-
figuration space.

During τm the state of the sample travels randomly
through its configuration space. A transition between con-
figurations I and J is allowed if the transition time τIJ
is shorter than τm. So, at finite τm only transitions with
characteristic time τIJ shorter than τm contribute to the
specific heat and the entropy. Thus, for a given τm, we con-
sider two configurations as connected if their τIJ is shorter
than τm, and we group the configurations in clusters ac-
cording to these connections. These clusters correspond
to regions of the configurations space being isolated from
each other on the time scale τm.

The characteristic transition time between configura-
tions I and J is [7,14],

τIJ = τ0 exp
(

2
∑

rij/a
)

exp (EIJ/T ) /Z . (4)

In this equation, the quantity τ0 is a constant of the or-
der of the inverse of the phonon frequency, τ0 ∼ 10−13 s.
The sum is the minimized sum over all hopping dis-
tances between sites which change their occupation in
the transition I → J . a denotes the localization radius,
EIJ = max(EI , EJ ) where EI is the energy of the state I,
T is the temperature, and Z is the partition function.

As in reference [14] we calculate the specific heat and
the entropy of each cluster assuming thermal equilibrium
in the clusters. We suppose that the duration of the mea-
surement is long enough for establishing thermal equilib-
rium inside each cluster and the transitions between dif-
ferent clusters are so rare that they can be ignored on the
time scale of the measurement. For times shorter than the
critical time connecting all the relevant configurations in
a single cluster the system is non ergodic. Each realiza-
tion of the system will be in a given cluster which will
not see the other clusters. The probability to be in a clus-
ter depends on the history of the system. We will assume
that the system has reached thermal equilibrium before
the measurements, and the weight of each cluster will be
proportional to its partial partition function. Taking into
account this weight we average c and S over the clusters.
So, c and S depend on τm via the cluster structure.

4 Relaxation functions

We study the process of relaxation of the specific heat
and the entropy according to the methods presented in
the previous section. To make the influence of τm directly
visible, we consider the ratio of the values of the specific
heat and the entropy for finite and infinite (equilibrium)
duration of measurement, respectively:

qc(T, τm) =
〈c(T, τm)〉
〈c(T,∞)〉 =

〈c(T, τm)〉
ceq

, (5)

qs(T, τm) =
〈S(T, τm)〉
〈S(T,∞)〉 =

〈S(T, τm)〉
Seq

, (6)
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Fig. 1. Relaxation functions of the specific heat as a function
of t, for the temperatures T = 0.006 (◦), 0.008 (�), 0.01 (�),
0.012 (N) and 0.014 (∗). Inset the relaxation functions of the
entropy for the same temperatures. The solid lines correspond
to fits with the function f(t) = f0 exp

�
−(t/τ )β

�
.

where ceq and Seq are the equilibrium values. Moreover, in
order to characterize the shape of the relaxation process
in the long time regime we study the following functions,

Rc(T, τm) = 1− qc(T, τm) , (7)

Rs(T, τm) = 1− qs(T, τm) , (8)

which go to zero at equilibrium.
In our simulations we set the localization radius

to 0.2 [24]. Investigating the physical properties of macro-
scopic systems, we have calculated ensemble averages, and
have compared the results for different sample sizes. In or-
der to ensure the convergence of the results on the number
of low-energy many-particle configurations in the set S,
we have taken from 25 000 to 75 000 configuration into ac-
count for the cases studied here (the number of configura-
tions to consider depends on the temperature and system
size). This selection ensures that the width of the range
of energies exceeds the temperature by at least a factor
of 25. As in reference [14] for N & 512 the result are free
of finite-size effects. Here we present the simulations for
N = 512 taking into account 1000 samples for ensemble
averages. In order to simplify the notation we consider the
variable t = τm/τ0, i.e. our unit of time is τ0.

We first study the shape of the relaxation functions Rc
and Rs. Figure 1 shows Rc and Rs as a function of t,
for five different temperatures. Here we can see that the
long time regime, Rc . 0.5 and Rs . 0.5, may be rea-
sonably fitted by a stretched exponential function. In all
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Fig. 2. Parameter β as a function of the temperature, ob-
tained by fitting Rc (•) and Rs (�) with the function f(t) =
f0 exp

�
−(t/τ )β

�
.

cases, at least the 75% of the stretched exponential func-
tion (f(t)/f0 < 0.75) is compared with the data. For all
temperatures considered here Rc is equal to Rs in the long
time regime (within the errors). This form of the relax-
ation functions brings us to think of a broad distribution
of relaxation times in the system, as has been found in ref-
erences [9,10]. We have also attempted a fit of our results
with equation (1) but the better fit is made with x ' 0,
i.e. we recover equation (2).

The influence of the temperature on the relaxation pro-
cess is studied. The values of β, obtained by fitting Rc
and Rs with equation (2), are presented in Figure 2. We
see that β increases with the temperature and it is the
same for both relaxation functions, Rc and Rs, at each
temperature (within the errors). This behavior of β is also
found in other glassy systems [25]. We could expect some
temperature T ∗, higher than the temperatures studied
here, where β = 1, recovering the exponential relaxation
process at T > T ∗. Unfortunately our method does not let
us investigate higher temperatures because we must take
a finite number of configurations into account in the set S
(we have taken the maximum number of configurations
that we are able to in order to make the calculations in a
reasonable time).

For an estimate of the long time relaxation we use τ
from the fit of equation (2) of Rc and Rs. As we can see in
Figure 3, τr is reasonably fitted by an Arrhenius behavior
divergence as T → 0

τr(T ) = a exp[T0/T ] , (9)

with a = 1.4 × 108 and T0 = 0.1106 for Rc; for Rs we
have a = 1.2× 109 and T0 = 0.0946. The differences in a
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Fig. 3. Relaxation time τr as a function of the inverse of the
temperature, obtained by fitting Rc (•) and Rs (∗) with the
function f(t) = f0 exp

�
−(t/τr)

β
�
. The lines are fits with the

function τr(T ) = a exp[T0/T ]. The values of τr correspond to
the values obtained from the fit in Figure 1.

and T0 from both relaxation functions are because of the
sensitivity of τ on the details of the fit.

5 Conclusion

We have studied the relaxation of the specific heat and
the entropy for the three-dimensional Coulomb glass at
very low temperatures and in thermal equilibrium. The
long time relaxation regime follows a stretched exponen-
tial function, with the exponent β < 1 increasing with the
temperature, which is an indication of a broad distribu-
tion of relaxation times in the system. From these results,
we could expect a dynamical transition at some temper-
ature T ∗ (above of the temperatures studied here) where
β = 1. The exponential relaxation process would be recov-
ered for T > T ∗. In reference [11] it was found T ∗ > 0.03
for the two-dimensional Coulomb glass although the ef-
fects of distance-dependent transition probabilities were
not taken into account. Moreover, the relaxation functions
found here in the thermal equilibrium are very different
from the power law relaxations found when the system
is out of equilibrium [10]. Nevertheless, in out of equilib-
rium experiments stretched exponential relaxation func-
tions are found [16]. Finally, we have found that the re-
laxation time diverges as an Arrhenius law when T → 0.
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